The Optimal Ball and Horoball Packings to the Coxeter Honeycombs in the Hyperbolic d-space
نویسنده
چکیده
In a former paper [18] a method is described that determines the data and the density of the optimal ball or horoball packing to each Coxeter tiling in the hyperbolic 3-space. In this work we extend this procedure – based on the projective interpretation of the hyperbolic geometry – to higher dimensional Coxeter honeycombs in H, (d = 4, 5), and determine the metric data of their optimal ball and horoball packings, respectively.
منابع مشابه
The Optimal Ball and Horoball Packings of the Coxeter Tilings in the Hyperbolic 3-space
In this paper I describe a method – based on the projective interpretation of the hyperbolic geometry – that determines the data and the density of the optimal ball and horoball packings of each well-known Coxeter tiling (Coxeter honeycomb) in the hyperbolic space H.
متن کاملRegular Honeycombs in Hyperbolic Space
made a study of honeycombs whose cells are equal regular polytopes in spaces of positive, zero, and negative curvature. The spherical and Euclidean honeycombs had already been described by Schlaf li (1855), but the only earlier mention of the hyperbolic honeycombs was when Stringham (1880, pp. 7, 12, and errata) discarded them as "imaginary figures", or, for the two-dimensional case, when Klein...
متن کاملEven More Infinite Ball Packings from Lorentzian Coxeter Systems
Boyd (1974) proposed a class of infinite ball packings that are generated by inversions. Later, Maxwell (1983) interpreted Boyd’s construction in terms of root systems in Lorentz spaces. In particular, he showed that the space-like weight vectors correspond to a ball packing if and only if the associated Coxeter graph is of “level 2”. In Maxwell’s work, the simple roots form a basis of the repr...
متن کاملLorentzian Coxeter Groups and Boyd-Maxwell Ball Packings
In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In fact, the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a geometric representation of a Coxeter group in Lorentz space, the set of limit directions of weig...
متن کاملHoroball Packings for the Lambert - cube Tilings in the Hyperbolic 3 - space
– (p, q) (p > 2, q = 2). These infinite tiling series of cubes are the special cases of the classical Lambert-cube tilings. The dihedral angles of the Lambert-cube are πp (p > 2) at the 3 skew edges and π2 at the other edges. Their metric realization in the hyperbolic space H 3 is well known. A simple proof was described by E. Molnár in [10]. The volume of this Lambert-cube type was determined ...
متن کامل